Ich würd's im Moment so betrachten:
-- Lineare Verteilungen können dann ihre Stärken ausspielen, wenn's tatsächlich um die Auswahl unter mehreren
gleichberechtigten Alternativen geht. Wenn ich beispielsweise auf einer Tabelle würfeln oder ohne größere Vorannahmen eine rein zufällige Himmelsrichtung, Uhrzeit o.ä. bestimmen will, dann mache ich das natürlich am besten linear; bei einer glockenähnlichen Verteilung müßte ich mir ja die jeweils halbwegs gleichen Einzelwahrscheinlichkeiten erst mühsam stückweise zusammenfrickeln, und selbst dann wäre das Ergebnis wahrscheinlich alles andere als perfekt. (Momentah vermute ich auch ein bißchen, daß lineare Verteilungen für zumindest manche von uns am besten mit direkt
überschaubaren Ergebnisbereichen funktionieren. D.h., einer der früher im Faden schon mal erwähnten Kritikpunkte an W20- und Prozentsystemen könnte eventuell gerade sein, daß sich bei so vielen möglichen Einzelergebnissen die konkreten Unterschiede zwischen ihnen in der persönlichen Wahrnehmung allmählich zu verwischen beginnen...57, 84, ist doch gehupft wie gesprungen, oder?
)
-- Normalverteilungen modellieren dagegen in erster Näherung am besten "natürliche" Streuprozesse, bei denen ich zwar erwarte, daß im Regelfall die Ergebnisse einigermaßen konsistent in der Nähe eines gegebenen Durchschnittswerts liegen, aber gelegentliche statistische Ausreißer nach oben oder unten (oder rechts oder links...je nachdem) durchaus auch mal vorkommen dürfen. Okay, ich kann ein ähnliches Verhalten auch zumindest grob mit einem hinreichend fein granulierten linearen Ansatz darstellen, indem ich da genügend Einzelergebnisse kreativ in Kategorien bündle und entsprechend interpretiere (siehe dazu diverse Regeln für kritische Erfolge und Patzer in W20- und Prozentsystemen)...aber das ist dann eben auch mit entsprechendem Mehraufwand verbunden, während mir eine geeignet gewählte angenäherte Glockenkurve das gewünschte Verhalten schon für lau und oft in feiner abgestufter Form bieten kann.
Wenn's jetzt um einen typischen "Probenwurf" nur zur Bestimmung von Erfolg-oder-Fehlschlag geht, dann kann man den prinzipiell erst mal mit beiden Methoden etwa gleich gut erschlagen; solange ich die gewünschte Erfolgschance überhaupt einigermaßen gut darstellen kann, dann ist so ziemlich
egal, was dabei unter der Haube konkret an Feinheiten abläuft. Unterschiede fangen erst dann an, sich zu zeigen, wenn Fragen nach zusätzlichen Modifikatoren, genauen Erfolgs- und Fehlschlagsgraden, und ähnlichem aufkommen. Und an dem Punkt angekommen finde ich persönlich dann eine zumindest grob angenäherte Normalverteilung schlicht intuitiver -- von einem Charakter einer bestimmten Kompetenzstufe
erwarte ich normalerweise einfach auch eine entsprechende relativ vorhersagbare Leistung (auf gegebenenfalls mal günstige oder widrige Umstände ihrerseits entsprechend einigermaßen vorhersagbare Auswirkungen haben können), und wenn er auch mal einen besonders guten oder schlechten Tag haben kann und der Plausibilität halber auch soll, sollte er andererseits normalerweise nicht einfach
generell von Tag zu Tag wild über das gesamte denkbare Spektrum streuen. Mit einer halbwegs passend gewählten Quasi-Glockenkurve kann ich das direkt und unmittelbar hinkriegen, bei rein linear verteilten Würfelergebnissen als Ausgangsbasis muß ich dagegen erst Umwege einschlagen, um am Ende ein ähnliches Verhalten zu erreichen.